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Polymer knot confined in a tube: Statics and relaxation dynamics
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Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan 106, Republic Of China
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The statics and relaxation dynamics of a polymer knot confined in a cylindrical tube of diameterD are
investigated by Monte Carlo simulations. The prime knots with crossings varying from 31 to 71 are considered.
The equilibrium radius of gyration along the axial direction is scaled asRi;RF(RF /D)m, whereRF is the
Flory radius of a knotted polymer. Our simulation results suggest thatm50.95, which is different from the
value for a linear chain,m52/3. The relaxation behavior of the knotted polymer is studied after the tubular
constraint is removed. The relaxation time can be scaled ast i;NRF

111/mRi
121/m , which is confirmed by

simulations. The effect of topological complexity on both properties is manifested through the Flory radius.

DOI: 10.1103/PhysRevE.65.011801 PACS number~s!: 61.41.1e, 83.10.Rs, 87.10.1e
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I. INTRODUCTION

The study of the static and dynamic properties of a po
mer chain is the key to the understanding of many polyme
materials. With the great improvements in experimental te
niques, it is now possible for experimentalists to manipul
a single polymeric molecule, such as a DNA molecule, un
desired conditions and to observe the changes in static
dynamic behaviors. For example, Perkins and co-work
@1,2# were able to stretch a single DNA molecule to fu
elongation under flows and the relaxation behavior of
chain was observed as the flow stopped. This work insp
much theoretical work in both scaling analysis and compu
simulation@3–7# because of its important relation to the fu
damentals of polymer physics. Many biological molecul
for instance, DNA, take the form of a knotted ring and the
are certain types of enzyme that can act on circular DNA
produce different types of knot@8–10#. The physical proper-
ties of knots are strongly affected by their topological pro
erties. Investigation of topological effects on the statics a
dynamics of knotted polymers could be important in und
standing the behavior of DNA.

De Gennes@11# performed some scaling analysis on t
static properties of a linear flexible polymer chain of leng
N confined within a cylindrical tube of diameterD. Sheng
and Wang@12# used the bead-spring chain model in contin
ous space to explicitly verify the universality of the scali
laws. The nonequilibrium relaxation behaviors were a
studied. The simulation results confirm the scaling analy
result that the characteristic relaxation time scales ast i
;N2D1/3. In the early stage, the relaxation is primarily d
to the movement of the free ends, similar to a stretched lin
chain being released from the stretching force. The beha
is also consistent with the prediction of the ‘‘stem a
flower’’ model proposed by Brochart-Wyart and co-worke
@3,4#. At longer times, the whole chain undergoes an ex
nential relaxation behavior.

Great advances have been made in classifying knots
topological invariants in recent decades@13–16#. Some ef-
forts have been made to relate the topological invariants
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knots to the static properties of the knotted polymers@17–
21#. Quake@17# expressed the knot complexity in terms
the number of essential crossingsC. Grosberget al. @18#
introduced another topological invariantp, which is the as-
pect ratio of the length~L! to the diameter~d! of a knot at its
maximum inflated state. A schematic drawing for the defi
tion of p can be seen in Fig. 1 of Ref.@18#. The value ofp
@19# measures the complexity of a knot and it can distingu
knots somewhat better thanC. Following the classical Flory
approach, the equilibrium radius of gyration of a knott
polymer can be determined by minimization of the free e
ergy, which consists of elasticity due to entropy and inter
tions between monomers. The interaction term for the kno
identical to that of a linear chain. The elastic free ener
proposed by Grosberget al., is equivalent to the entropy of a
linear polymer in a straight tube with aspect ratiop and vol-
ume RF

3 . The polymer ends are attached to the tube en
This gives

RF;aNnp24/15,

whereN is the number of monomers in the chain anda is the
monomer size.RF is also called the Flory radius. This ex
pression was confirmed in our previous work@20#.

The static properties of a knotted polymer under a stret
ing force have been studied by the Monte Carlo method@21#.
The results indicate that for stretched knots the scaling
haviors are the same as that of a linear chain. However,
elastic modulus of a knotted polymer is larger than that of
equal-length linear chain. The nonequilibrium dynamics o
knotted polymer can also be investigated by cutting a pri
knot @20#. The result for the relaxation of a knotted chain in
a linear one revealed that even prime knots should be c
sified into different groups based on their topological sim
larity.

A closely related topic also concerning the physics o
single polymer chain is the study of a knotted chain molec
under a geometrical constraint. In this paper, both statics
dynamics of a prime knot confined in a cylindrical tube
diameterD!RF are analyzed through Monte Carlo simul
tions. Noticeably, the physical properties of knotted cha
are not only functions of chain lengthN, but also greatly
affected by the topological complexity of different kno
©2001 The American Physical Society01-1
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YU-JANE SHENG AND KUANG-LING CHENG PHYSICAL REVIEW E65 011801
@20,21#. In Sec. II we briefly describe the simulation deta
for prime knots modeled by beads connected by stiff sprin
The parameters are chosen to avoid occurrence of b
crossing within the knotted chain. The ensemble-average
dius of gyration along the axis direction,Ri , is obtained at
equilibrium. On the other hand, when the confinement
removed, the time variation of the radius of gyration is
corded. The characteristic time for relaxation,t i , is then
determined. In Sec. III simple scaling expressions for b
Ri and t i are proposed. The length occupied by a polym
chain in the tube can be scaled asRi>RF(RF /D)m. For a
linear chain,m52/3. However, for a knotted chain, whic
possesses a topological effect,m remains unknown and
needs to be determined from simulation results. The re
ation time of a prime knot is also discussed using a sim
approach.

II. MODEL AND SIMULATION DETAILS

The knotted polymer chain studied in this work is mo
eled as beads connected by stiff springs. The interact
between the nonbonded beads are through the square
potentials

Unb5H ` ~s.r !

2« ~ls.r>s!

0 ~r>ls!,

~1!

where« and s are the energy and size parameters, resp
tively, and l51.5. The monomeric« and s are the units
used for the reduced quantities for temperature and dista
as T* 5kT/« and R* 5R/s. The interactions betwee
bonded beads are represented by a cutoff harmonic sp
potential as

Ub5
1

2
ks2S r

s
21.2D 2

, 1.4>
r

s
.1.0. ~2!

The potential is infinite elsewhere. We have chosenks2/«
5400. The parameters in the model are chosen to pre
any bond crossing occurring within the knotted chain.

The systems studied contain a single polymer chain w
chain lengthN ranging from 42 to 120. The simulations a
performed under the conditions of constant temperature,
ume, and total number of beads. In the present study,
reduced temperatureT* 510 is chosen so that the system
in the good solvent regime. We have studied the knot
polymers up to seven crossings: 31 , 41 , 51 , 61, and 71. The
standard notation for uniquely labeling a knot isCK , where
C is the number of essential crossings andK is an index for
a particular knot@20,16#.

The initial configurations are generated by growing t
chain bead by bead to the desired length and knot type
simulate a single knotted polymer chain confined in a tube
diameterD, we use force to ‘‘drag’’ the chain into the tube
The trial moves employed for the equilibration and produ
tion processes of chains are bead displacement motions@22#,
which involve randomly picking a bead and displacing it to
new position in the vicinity of the old position. The distan
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away from the original position is chosen with a probabil
such that the condition of equal sampling of all points in t
spherical shell surrounding the initial position is satisfie
The interactions between the chain and the tube wall
purely excluded volume. The new configurations result
from this move are accepted according to the standard
tropolis acceptance criterion@23#. Runs for the same chain
length at different tube diameters are performed starting w
the final configuration from a previous diameter and a
equilibrated for 703106 Monte Carlo steps~MCS!. Mea-
surements of static properties such as the radius of gyra
along the axial direction are taken over a period of (5 –1
3106 MCS/monomer.

The mean radii of gyration along the axial and radial
rections are given by

^Ri&5K (
i 51

N

~zi2zCM!2

N
L 1/2

, ~3!

^Rperp
2 &5K (

i 51

N

@~xi2xCM!21~yi2yCM!2#

N
L , ~4!

where (xi ,yi ,zi) are the coordinates of thei th monomer in
the chain and (xCM ,yCM ,zCM) are the coordinates of th
center of mass of the chain. The angular brackets^ & denote
the ensemble average.

The nonequilibrium dynamical process of releasing
confinement of the chain att50 is characterized by the tim
dependence of thez component of the radius of gyratio
Ri(t):

Ri~ t !

Ri~0!
;expS 2

t

t D , ~5!

whereRi(0) is the radius of gyration in thez direction att
50 and to overbar denotes an average over different rea
tions of the relaxation process. Typically, this average
taken for 500–1500 realizations in our simulations. Time
measured in units of Monte Carlo steps per monomer
MCS/monomer means that on average every monomer
attempted to move once.

III. RESULTS AND DISCUSSION

On the basis of the Monte Carlo scheme, the static
relaxation dynamic properties of a polymer knot confined
a cylindrical tube are calculated for different values of t
tube diameter and also for different chain lengths. In t
section scaling expressions for the radius of gyration and
relaxation time are proposed and verified by simulations.

A. Static properties

As mentioned in Sec. I, de Gennes@11# performed a scal-
ing analysis and obtained scaling laws for the static prop
ties of a single polymer chain confined in a cylindrical tu
1-2
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POLYMER KNOT CONFINED IN A TUBE: STATICS . . . PHYSICAL REVIEW E 65 011801
of diameterD. The system has two characteristic lengths,
diameter of the tube and the Flory radiusRF5aNn, whereN
is the number of monomers in the chain anda is the mono-
mer size. In good solvent conditions,n'3/5. Under the con-
ditions a!D!RF , the chain can experience confineme
but can still wiggle in the lateral direction. The length occ
pied by the chain in the tubeRi has the scaling form

Ri5RFF iS RF

D D , ~6!

whereF i(x) is a dimensionless scaling function. For a thi
tube, i.e.,D@RF , since the wall of the tube has little effec
on the chain, we expectRi to be approximately proportiona
to RF , that is,F i(x)→1 for x→0. For a thin tube where
D!RF ~i.e., x→`), F i(x) is assumed to be proportional t
xm. Since the chain becomes a one-dimensional chain f
thin tube, one anticipates thatRi must be linear inN, Ri
[aNn(aNn/D)m;N. As a consequence,m51/n21 andm
52/3 in the good solvent regime. This result has been c
firmed by Monte Carlo simulations in our previous wo
@12#. The chain length along the tube can then be expres
asRi5Na(a/D)1/n21;ND2/3.

One would expect that the situation for a polymer kn
confined within a tube is somewhat like that for a line
chain. Nevertheless, the topological effect associated w
knots comes into play. The system possesses two chara
istic lengths as well; that is, the tube diameterD and the
Flory radiusRF of the knot. According to the scaling b
Grosberget al. @18#, the radius of a gyration of a knotte
polymer in a good solvent is scaled asRF;Nnp24/15, where
p brings in the topological effects on a knotted type polym
The value ofp increases as the complexity of the knot i
creases. For example,p516.4, 21.2, 24.2, 29.3, and 30.9 fo
31 , 41 , 51 , 61, and 71 @19#, respectively. In accord with the
BuckinghamP theorem, the length occupied by the chain
the tube Ri should also have the scaling formRi
5RFF i(RF /D). Similar to a linear chain, the knotted poly
mer inside a thick tube can retain its conformation witho
being significantly affected by the wall of the tube. Thu
F i(RF /D)→1 for RF /D→0. Inside a thin tube,F i(RF /D)
can also be assumed to be proportional to (RF /D)m. Al-
though a linear chain in a thin tube is allowed to be stretc
like a one-dimensional string, a knotted polymer posses
conformations of loops and has several numbers of cross
within the loop. The significance of the topological effects
yet to be explored and thereforem can be determined only b
results of simulations or experiments. Under the condition
D!RF , whether the knotted polymer displays a on
dimensional structure or not becomes an interesting ques
The outcome may shed some light on the topological in
actions between the knot and the tube.

Since the topological effect on the confined knotted ch
is unknown, we first perform simulations in continuous spa
to investigate the static structure and make an attempt to
the scaling relation. Figure 1 demonstrates snapshots
polymer knot 41 with lengthN582 confined within a tube a
different diameters~D! scaled bya. When D is approxi-
mately equal toRF , the interactions between the chain bea
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and the tube wall are insignificant and the chain can roug
retain its constant Flory coil formation even within the tub
WhenD is apparently smaller thanRF , the excluded volume
interactions between the knot and tube wall become subs
tial and prevent the knot from maintaining the Flory co
conformation. The degree of extension in the axial direct
is increased with decreasingD. Note that a linear chain can
be compressed into a tube withD'a. The chain becomes
almost fully extended in response to such compress
However, a knotted chain has intrinsic constraints to prev
it from being extended in a linear fashion. As shown in F
1, this prime knot (41) can be compressed only into a tube
diameter aboutD'5.

Figure 2 shows the results of the Monte Carlo simulatio
for 31 and 61 knots of different chain lengths trapped with
tubes of different diameters in the good solvent regime. T
Ri is plotted againstD/2 on a log-log plot. On average, th
best fit linear lines yield a value of slope'20.95. This
result indicates that the scaling law forRi takes the following
form:

FIG. 1. Snapshots of a knotted chain 41 with length N582
confined within a tube at different diameters~D! scaled bya. The
bead diameter has been decreased for the purpose of clarity.

FIG. 2. The mean radius of gyration in the axial directionRi vs
the radius of the tubeD/2 for two types of knot at various chain
lengths. 31 : (h) N542; (s) N560; (nup) N582. 61 : (j) N
560; (d) N582; (m) N5120. The dotted and solid lines are th
best-fitted curves for the 31 and 61 knots, respectively.
1-3
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YU-JANE SHENG AND KUANG-LING CHENG PHYSICAL REVIEW E65 011801
Ri;RFS RF

D D 0.95

. ~7!

Equation~7! can be expressed in terms ofp for n'0.6,

Ri;N1.17p20.52D20.95. ~8!

Note that this scaling relation is quite different from the on
dimensional chain argument for the linear chain, which giv
Ri;ND22/3. Ri of a knotted chain has a stronger depe
dence onD than that of a linear chain. This fact implies th
the loops within a knot being forbidden to cross one anot
enhances the excluded interactions between the kno
chain and the wall. To further verify the relation, we ha
plotted Ri /N1.17 againstD/2 on a log-log plot. As one can
see from Fig. 3, data for knots 31 and 61 with different chain
lengths collapse into two separate lines. This result sh
that the scaling relationRi;N1.17 is also valid. The differ-
ence between these two data sets comes from the topolo
effects of the two different types of knot. Finally, as depict
in Fig. 4, we have taken into account the effects of ch
lengths~N! and knot complexity~p! onRi and all the data for
different knots with different collapse crumple together. T
best-fitted line for these data has a slope approximately e
to 20.93. Again, the results verify the validity of Eq.~8!.

Note thatRi is proportional toNa wherea'1.17. We are
aware of the fact that for a linear chaina n('0.6) for D
@RF and becomes 1 asD!RF . On the basis of this conclu
sion, one would intuitively anticipate that it is impossible f
the exponenta to be greater than 1. In this study, however,a
is found to be greater than 1 for a knotted chain. As
scribed in the previous section, the exponentm is first ob-
tained from the simulation results forRi and D combined
with the well-known dependence ofRF on N @18,20#. Then,
with the chain length altered directly, the data ofRi /Na

FIG. 3. The scaled mean radius of gyration in the axial direct
Ri /N1.17 vs the radius of the tubeD/2 for two types of knot at
various chain lengths. 31 : (h) N542; (s) N560; (nup) N
582. 61 : (j) N560; (d) N582; (m) N5120. The dotted and
solid lines are the scaling curves for the 31 and 61 knots with slope
of 20.95.
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againstD collapse into one line and thus confirm the pred
tion. We therefore believe that the simulations are se
consistent and a scaling law with insight into physics is w
thy of further pursuit. A possible explanation is that th
knotted chain in this study is in an intermediate regime
tween a free chain and a completely stretched chain.
power law is still followed in this regime, arising from th
competition between the external, geometrical constraint
the internal topological effect inherent in the knot.

We have also recorded the lateral spread of the ch
^Rperp

2 & for different chain lengths and types of knot. Th
variation of ln̂Rperp

2 & with ln(D/2) is plotted in Fig. 5. A
fairly good linear relation between̂Rperp

2 & andD2 is shown
and thereforêRperp

2 & scales asD2 for D!RF , as expected.
The deviation from the linear relation for large values ofD
indicates that forD*2RF a transition takes place. The cha
acteristic volume associated with a confined chain can
estimated asV;Rperp

2 Ri . Consequently, one hasV;D4/3

for a linear chain. For a knotted chain, however,V;D22m

'D1.05. Due to the looped structure, the volume of the co
fined knot increases with increasingD less evidently than
that of a linear chain.

B. Dynamic properties

We have studied the static properties of a polymer k
initially confined in a tube and allowed to equilibrate with
the tube. In this work we are also interested in the noneq
librium relaxation behavior, after the constraint is remove
Recall that the confinement energy of a linear chain confi
in a tube, according to de Gennes@11#, can be expressed a

Fcon f>TfS RF

D D . ~9!

n FIG. 4. The scaled mean radius of gyration in the axial direct
Ri /N1.17p20.52 vs the radius of the tubeD/2 for five types of knot at
various chain lengths. 31 : (j) N542, N560, andN582. 41 :
(d) N542, N560, andN582. 51 : (m) N542, andN560, and
N582. 61 : (.) N560, N582, andN5120. 71 : (!) N560, N
582, andN5120. The solid line is the scaling curve with slope
20.95.
1-4
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POLYMER KNOT CONFINED IN A TUBE: STATICS . . . PHYSICAL REVIEW E 65 011801
In the strong confinement limit,D!RF ~i.e.,RF /D→`), the
energy has a linear relation withN, Fcon f>T(RF /D)x;N.
Consequently,x51/n and Fcon f5TN(a/D)1/n. The forego-
ing equation can be rearranged to giveFcon f
>T(Ri /RF)1/(12n), where Ri5Na(a/D)1/n21. For a poly-
mer knot confined within a tube, however,Ri is not propor-
tional toN in the limit of RF@D. Ri is proportional toN1.17

instead. It is reasonable to speculate that the confinem
energy in the present case does not have a linear rela
with N. In light of the blob theory, the polymer knot can b
assumed to break up into an ideal string of noninterac
blobs, each with sizeD. This scenario is valid when th
resulting knot extension exceeds the Flory radiusRF but is
not yet comparable to the fully extended length under ex
nal confinement. The blob size is related to the effect
stretching force and temperature viaD5kBT/ f e f f , wherekB
is the Boltzmann factor. Thus,f e f f5(kBT/RF)(Ri /RF)1/m

and the confinement energy of the knot is equivalent to
elastic work done by the effective stretching force. The wo
can then be estimated as

Wel5E
0

R0
f e f fdRi;kBTS R0

RF
D (11m)/m

, ~10!

whereR05Ri(t50).
We attempt to analyze such a relaxation phenomenon

similar method to that adopted in Ref.@12#. We assume tha
the confinement energy is dissipated by the viscous dam
force after the constraint imposed upon the chain is reliev
In our Monte Carlo simulation, there is no hydrodynam
interaction, and therefore the Rouse model is expected t
correct. By using Stokes law, the viscous damping force
be obtained as

FIG. 5. The variation of the lateral spread ln^Rperp
2 & of knots as a

function of ln(D/2) for various knots. (j) 31 , N560; (d) 41 ,
N560; (m) 51 , N560; (.) 61 , N560; (h) 51 , N582; (s)
61 , N582; (nup) 71 , N582. The solid line is the scaling curv
with slope of 2.
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]t DN, ~11!

wherem is the viscosity. Assuming that the relaxation time
dominated by a single time scalet i , the time dependence o
Ri(t) can be written asRi(t)5Ri(0)F(t/t i) for some func-
tion F. The work dissipated is then given by

Wv5E
0

R0
f vdRi . ~12!

Equating Eqs.~10! and ~12!, t i can be estimated by

t i;
ma

T
NRF

(m11)/mR0
(m21)/m . ~13!

We have used the relation

R05RFS RF

D D m

, ~14!

where m50.95 andRF;aNnp24/15. In good solvents,n
'0.6, one obtains the relaxation time from Eq.~13!,

t i;N2.2p20.52D0.05. ~15!

When the tube is removed att50, the knotted chain start
to relax toward Flory coil conformation. Figure 6 depicts t
relaxation process. One unit of time contains 43105 MC
steps. It was found that the relaxation mechanisms are so
what different from those associated with a linear chain. O
ing to the excluded volume interactions between the ch
beads and the wall, a linear chain confined in a tube beco
extended. When the constraint is removed, the large-s
relaxation proceeds primarily through the end beads of
chain. For knotted chains, due to the looped structure, th
are no free end beads and the relaxation can start only
small-scale internal relaxation by each bead on the ch

FIG. 6. Snapshots of the configurations of a single knotted ch
(41 ,N560) during the relaxation process. Initially, the chain
extended due to the confinement in a tube atD/252.0. The tube is
removed att50. Snapshots betweent andt11 contain 43105 MC
steps. The bead diameter has been decreased for the purpo
clarity.
1-5
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YU-JANE SHENG AND KUANG-LING CHENG PHYSICAL REVIEW E65 011801
The conformations of the knotted chains can be probed
looking at snapshots of the relaxation process as show
Fig. 6. Initially, the knot is in its extended state. As the co
straint is removed, the knot starts to recoil. Because of
looped structure of a knotted chain, the relaxation inRi(t) is
less evident than that of a linear chain@12#. At t54 ~i.e.,
after 1.63106 steps!, the knot approaches its natural sta
fairly closely.

We have monitored the changes ofRi(t) as a function of
t, after the constraint is removed, through dynamic Mo
Carlo simulations. Figure 7 displays the variation
Ri(t)/Ri(0) versust for 51 andN560 at different tube di-
ameters. Note that, in fact, the radius of gyration of the ch

FIG. 7. Ri(t)/Ri(0) for 51 andN560 at different diameters o
the tube (t in units of MCS!. D/252.3, 2.5, 2.7, 3.0, 3.3, and 3.
from bottom to top.

FIG. 8. Monte Carlo data for the relaxation time~in units of
MCS/monomer! t i vs D/2 for 31 knot at various chain lengths: (j)
N542; (d) N560; (m) N582. The solid lines are the scalin
relation with a slope of 0.05.
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in thez direction fluctuates~as can be seen in Fig. 6 as wel!.
However, the average over many relaxation processes re
in a smoothly decaying curve. Those curves in Fig. 7 sh
the evolution of the ensemble-averaged relaxation proces
In general, these curves are noisier than those for a lin
chain. Thus, more realizations of the relaxation process
needed in this study.

The relaxation timet i is extracted from the data o
Ri(t)/Ri(0) by assuming that it decays exponentially
Ri(`)/Ri(0) as e2t/t i. Figure 8 shows the variation oft i
with D/2 for 31 with N542, 60, and 80. In accord with Eq
~15!, it is not surprising that the relaxation time is a fair
weak function of the tube diameter. The lines plotted

FIG. 9. Monte Carlo data for the relaxation time~in units of
MCS/monomer! t i /p20.52 vs D/2 for various knots atN560: (j)
31 ; (s) 41 ; (m) 51 ; (.) 61 ; (!) 71. The solid line represents th
scaling relation with a slope of 0.05.

FIG. 10. Monte Carlo data for the relaxation time~in units of
MCS/monomer! t i /N2.2 vs D/2 for 31 knot at various chain
lengths: (j) N542; (d) N560; (m) N582. The solid line de-
notes the scaling relation with a slope of 0.05.
1-6
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POLYMER KNOT CONFINED IN A TUBE: STATICS . . . PHYSICAL REVIEW E 65 011801
Fig. 8 are straight lines with slopes equal to 0.05. The sim
lation results are quite consistent with our scaling analy
This result indicates that the chain takes about the same
to relax for variousD. This consequence is different from
what we observed for a linear chain. We speculate that
relaxation process of a knot consists of two different tim
scale regimes. In the early stage, the relaxation is prima
caused by the rearrangement of the ‘‘blobs’’ formed with
the knot. At longer times, however, the whole chain und
goes relaxation through the movements of each bead. At
stage, the tension of the chain caused by the constraint o
tube wall is relieved and the topological complexity of t
knot p has more profound effects on the relaxation proc
than doesD. Thus,t i becomes essentially independent ofD.

According to the scaling analysis, we should observet i
;p20.52. In Fig. 9, the quantityt i /p20.52 is plotted against
D/2 on a log-log plot for different types of knot withN
560. Although the data are quite scattered, they still exh
a fairly collapsed pattern. Finally, Fig. 10 illustrates the
fect of chain length. The relaxation timet i is scaled with
N2.2 for 31 and N542, 60, and 82. Similarly, the data co
nc

et

01180
-
s.

e

e
-
ly

-
is
he

s

it
-

lapse into a single line with a slope equal to 0.05. The sca
relationt i;N2.2 is therefore verified.

In this paper, the dynamic Monte Carlo method is adop
to study the relaxation of a knotted chain. In terms of lo
term, large-scale properties, it is equivalent to the Ro
model, in which the effects of internal friction are negligib
@24#. There is another dynamic algorithm that could be us
to model a hard-core chain confined to a tube@25,26#. The
Brownian dynamics algorithm, with random thermal forc
acting on monomers and hydrodynamic interactions
glected, should be capable of reproducing the work prese
here.
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