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Polymer knot confined in a tube: Statics and relaxation dynamics
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The statics and relaxation dynamics of a polymer knot confined in a cylindrical tube of diabheter
investigated by Monte Carlo simulations. The prime knots with crossings varying ffdm7 are considered.
The equilibrium radius of gyration along the axial direction is scaledR@asRg(Rg/D)™, whereR is the
Flory radius of a knotted polymer. Our simulation results suggestrttya0.95, which is different from the
value for a linear chainm=2/3. The relaxation behavior of the knotted polymer is studied after the tubular
constraint is removed. The relaxation time can be scaled”aNR,'l:”’mR”l*l’m, which is confirmed by
simulations. The effect of topological complexity on both properties is manifested through the Flory radius.
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[. INTRODUCTION knots to the static properties of the knotted polymlerg—
21]. Quake[17] expressed the knot complexity in terms of
The study of the static and dynamic properties of a polythe number of essential crossin@s Grosberget al. [18]
mer chain is the key to the understanding of many polymeridntroduced another topological invariapt which is the as-
materials. With the great improvements in experimental techpect ratio of the lengtkL) to the diametefd) of a knot at its
niques, it is now possible for experimentalists to manipulatgnaximum inflated state. A schematic drawing for the defini-
a single polymeric molecule, such as a DNA molecule, undetion of p can be seen in Fig. 1 of Rgf18]. The value ofp
desired conditions and to observe the changes in static and9] measures the complexity of a knot and it can distinguish
dynamic behaviors. For example, Perkins and co-worker§nots somewhat better thah Following the classical Flory
[1,2] were able to stretch a single DNA molecule to full approach, the equilibrium radius of gyration of a knotted
elongation under flows and the relaxation behavior of thepolymer can be determined by minimization of the free en-
chain was observed as the flow stopped. This work inspire@rgy, which consists of elasticity due to entropy and interac-
much theoretical work in both scaling analysis and computetions between monomers. The interaction term for the knot is
simulation[3—7] because of its important relation to the fun- identical to that of a linear chain. The elastic free energy,
damentals of polymer physics. Many biological molecules proposed by Grosberwgf al, is equivalent to the entropy of a
for instance, DNA, take the form of a knotted ring and therelinear polymer in a straight tube with aspect rgtiand vol-
are certain types of enzyme that can act on circular DNA andime RE. The polymer ends are attached to the tube ends.
produce different types of kn¢8—10]. The physical proper- This gives
ties of knots are strongly affected by their topological prop-

erties. Investigation of topological effects on the statics and Re~aNp~ 415,
dynamics of knotted polymers could be important in under-
standing the behavior of DNA. whereN is the number of monomers in the chain ang the

De Genneg11] performed some scaling analysis on themonomer sizeRg is also called the Flory radius. This ex-
static properties of a linear flexible polymer chain of lengthpression was confirmed in our previous wgd].
N confined within a cylindrical tube of diamet&. Sheng The static properties of a knotted polymer under a stretch-
and Wand 12] used the bead-spring chain model in continu-ing force have been studied by the Monte Carlo mef{t2dd.
ous space to explicitly verify the universality of the scaling The results indicate that for stretched knots the scaling be-
laws. The nonequilibrium relaxation behaviors were alschaviors are the same as that of a linear chain. However, the
studied. The simulation results confirm the scaling analysiglastic modulus of a knotted polymer is larger than that of an
result that the characteristic relaxation time scalesrgs equal-length linear chain. The nonequilibrium dynamics of a
~N?D'3, In the early stage, the relaxation is primarily due knotted polymer can also be investigated by cutting a prime
to the movement of the free ends, similar to a stretched lineaknot[20]. The result for the relaxation of a knotted chain into
chain being released from the stretching force. The behaviaa linear one revealed that even prime knots should be clas-
is also consistent with the prediction of the “stem andsified into different groups based on their topological simi-
flower” model proposed by Brochart-Wyart and co-workers larity.
[3,4]. At longer times, the whole chain undergoes an expo- A closely related topic also concerning the physics of a
nential relaxation behavior. single polymer chain is the study of a knotted chain molecule
Great advances have been made in classifying knots anghder a geometrical constraint. In this paper, both statics and
topological invariants in recent decaddss—16. Some ef- dynamics of a prime knot confined in a cylindrical tube of
forts have been made to relate the topological invariants ofiameterD <R are analyzed through Monte Carlo simula-
tions. Noticeably, the physical properties of knotted chains
are not only functions of chain lengtN, but also greatly
*Corresponding author. affected by the topological complexity of different knots
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[20,21]. In Sec. Il we briefly describe the simulation details away from the original position is chosen with a probability
for prime knots modeled by beads connected by stiff springssuch that the condition of equal sampling of all points in the
The parameters are chosen to avoid occurrence of borspherical shell surrounding the initial position is satisfied.
crossing within the knotted chain. The ensemble-average rahe interactions between the chain and the tube wall are
dius of gyration along the axis directioRy, is obtained at purely excluded volume. The new configurations resulting
equilibrium. On the other hand, when the confinement isfrom this move are accepted according to the standard Me-
removed, the time variation of the radius of gyration is re-tropolis acceptance criterioi23]. Runs for the same chain
corded. The characteristic time for relaxatior), is then length at different tube diameters are performed starting with
determined. In Sec. Il simple scaling expressions for botithe final configuration from a previous diameter and are
R| and 7 are proposed. The length occupied by a polymerequilibrated for 7 10° Monte Carlo stepgMCS). Mea-
chain in the tube can be scaled RBs=Rr(R:/D)™. For a  surements of static properties such as the radius of gyration
linear chain,m=2/3. However, for a knotted chain, which along the axial direction are taken over a period of (5-10)
possesses a topological effeecty remains unknown and x10° MCS/monomer.

needs to be determined from simulation results. The relax- The mean radii of gyration along the axial and radial di-
ation time of a prime knot is also discussed using a similarections are given by

approach.
pp N 1/2

L 2
Il. MODEL AND SIMULATION DETAILS 21 (zi=2zcm)

. A . Rpy=\—F——/ €)
The knotted polymer chain studied in this work is mod- N

eled as beads connected by stiff springs. The interactions
between the nonbonded beads are through the square-well
potentials

N
= [(X—Xcm) 2+ (Yi—Yem)?]
(Rperp) = N N

0 (o>r1)
Up=y 2 (Ao>r=0) (D) where & ,y;,z) are the coordinates of triéh monomer in
0 (r=No), the chain and Xcm,Yem 2cm) are the coordinates of the
) center of mass of the chain. The angular bracketslenote
wheree and o are the energy and size parameters, respeghe ensemble average.
tively, and\=1.5. The monomerie: and o are the units  The nonequilibrium dynamical process of releasing the
used for the reduced quantities for temperature and distan¢®nfinement of the chain &t=0 is characterized by the time

as T*=kT/e and R*=R/o. The interactions between gependence of the component of the radius of gyration
bonded beads are represented by a cutoff harmonic sprlrng(t):

potential as

2 r Ri(t) F{—E) 5
. 14->10, ?) R0 TR 7) ®

1 o[ T
szzk(f ; —-1.2
whereR(0) is the radius of gyration in the direction att

The potential is infinite elsewhere. We have chogeri/e =0 and to overbar denotes an average over different realiza-
=400. The parameters in the model are chosen to prevent 9

any bond crossing occurring within the knotted chain. tions of the relaxation process. Typically, this average is

) ) . .. taken for 500—1500 realizations in our simulations. Time is
The systems studied contain a single polymer chain with

. . . . measured in units of Monte Carlo steps per monomer; 1
chain lengthN ranging from 42 to 120. The simulations are
" MCS/monomer means that on average every monomer has
performed under the conditions of constant temperature, vol-
attempted to move once.
ume, and total number of beads. In the present study, the
reduced temperature* =10 is chosen so that the system is
in the good solvent regime. We have studied the knotted IIl. RESULTS AND DISCUSSION
polymers up to seven crossings;:, 3, 5;, 64, and 7. The

s : . On the basis of the Monte Carlo scheme, the static and
standard notation for uniquely labeling a knotdg , where

i : - . X relaxation dynamic properties of a polymer knot confined in
C is the number of essential crossings & an index for 5 cyilindrical tube are calculated for different values of the
a particular kno{20,16. tube diameter and also for different chain lengths. In this

The initial configurations are generated by growing thegection scaling expressions for the radius of gyration and the
chain bead by bead to the desired length and knot type. T

X k : : i Relaxation time are proposed and verified by simulations.
simulate a single knotted polymer chain confined in a tube of
diameterD, we use force to “drag” the chain into the tube.
The trial moves employed for the equilibration and produc-
tion processes of chains are bead displacement mdtis As mentioned in Sec. |, de Genngd] performed a scal-
which involve randomly picking a bead and displacing it to aing analysis and obtained scaling laws for the static proper-
new position in the vicinity of the old position. The distance ties of a single polymer chain confined in a cylindrical tube

A. Static properties
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of diameterD. The system has two characteristic lengths, the
diameter of the tube and the Flory radiRs=aN", whereN

is the number of monomers in the chain and the mono-
mer size. In good solvent conditionss= 3/5. Under the con-
ditions a<D<Rg, the chain can experience confinement
but can still wiggle in the lateral direction. The length occu-
pied by the chain in the tub® has the scaling form

: (6)

Re
RI=Re®)| &

whered(x) is a dimensionless scaling function. For a thick
tube, i.e.,.D>Rg, since the wall of the tube has little effect  FIG. 1. Snapshots of a knotted chaip With length N=82
on the chain, we expe®, to be approximately proportional confined within a tube at different diametef3) scaled bya. The
to Rg, that is,®|(x)—1 for x—0. For a thin tube where bead diameter has been decreased for the purpose of clarity.
D<Rg (i.e.,x—»), ®|(x) is assumed to be proportional to
x™. Since the chain becomes a one-dimensional chain for

thin tube, one anticipates th&; must be linear inN, R i
P " | WhenD is apparently smaller thaRg, the excluded volume

=aN”(aN”/D)™~N. As a consequencey=1/r—1 andm ) ,
—2/3 in the good solvent regime. This result has been coninteractions between the knot and tube wall become substan-

firmed by Monte Carlo simulations in our previous work tial and prevent the knot from mai_ntai_ning the_FIor_y cc_>i|
[12]. The chain length along the tube can then be expresse‘ﬁpnformat'on' The degree of extension in the axial direction

as RH:Na(a/D)l/V—1~ND2/3_ Is increased with decreasii® Note that a linear chain can

One would expect that the situation for a polymer knotbe compressed into a tybe wiv~a. The chain becomeg
confined within a tube is somewhat like that for a linear@Most fully extended in response to such compression.
chain. Nevertheless, the topological effect associated with!oWeVer, a knotted chain has intrinsic constraints to prevent
knots comes into play. The system possesses two charactétr-fro_m bglng extended in a linear fashion. As _shown in Fig.
istic lengths as well; that is, the tube diameferand the v this prime knot (4) can be compressed only into a tube of
Flory radiusR of the knot. According to the scaling by diameter abouD~5. , _
Grosberget al. [18], the radius of a gyration of a knotted Figure 2 shows the r'esults of thg Monte Carlo S|mulat|gns
polymer in a good solvent is scaled Bs~N*p~%15, where for 3, and_6l knots _of dlfferer_lt chain lengths trapped_ within
p brings in the topological effects on a knotted type polymer.t“b,es of dlﬁeren'g diameters in the good solvent regime. The
The value ofp increases as the complexity of the knot in- RJ 1S Plotted againsb/2 on a log-log plot. On average, the
creases. For examplp=16.4, 21.2, 24.2, 29.3, and 30.9 for Pest fit linear lines yield a value of slope —0.95. This
3,, 4,, 5,, 6,, and 7, [19], respectively. In accord with the result indicates that the scaling law fey takes the following
Buckinghamil theorem, the length occupied by the chain in form:
the tube R, should also have the scaling fornk, 10
=Rr®|(Re/D). Similar to a linear chain, the knotted poly-
mer inside a thick tube can retain its conformation without
being significantly affected by the wall of the tube. Thus,
®(Re/D)—1 for Re/D—0. Inside a thin tubep(Rg/D)
can also be assumed to be proportional B AD)™. Al-
though a linear chain in a thin tube is allowed to be stretched
like a one-dimensional string, a knotted polymer possesses
conformations of loops and has several numbers of crossings
within the loop. The significance of the topological effects is
yet to be explored and therefomecan be determined only by
results of simulations or experiments. Under the condition of
D<Rg, whether the knotted polymer displays a one-
dimensional structure or not becomes an interesting question. 2f
The outcome may shed some light on the topological inter-
actions between the knot and the tube. . . . .

Since the topological effect on the confined knotted chain 2 7
is unknown, we first perform simulations in continuous space D/2
to investigate the static structure and make an attempt to find FG. 2. The mean radius of gyration in the axial directRyvs
the scaling relation. Figure 1 demonstrates snapshots of e radius of the tub®/2 for two types of knot at various chain
polymer knot 4 with lengthN=82 confined within a tube at |engths. 3: (0) N=42; (O) N=60; (Aup) N=82. 6,;: (M) N
different diametersD) scaled bya. When D is approxi- =60; (@) N=82; (A) N=120. The dotted and solid lines are the
mately equal tdRg, the interactions between the chain beadsbest-fitted curves for the,3and 6 knots, respectively.

gnd the tube wall are insignificant and the chain can roughly
retain its constant Flory coil formation even within the tube.

R//
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FIG. 3. The scaled mean radius of gyration in the axial direction  FIG. 4. The scaled mean radius of gyration in the axial direction
R/N**7 vs the radius of the tub®/2 for two types of knot at R, /N**p~252ys the radius of the tubB/2 for five types of knot at
various chain lengths. ;3 (O0) N=42; (O) N=60; (Aup) N  various chain lengths.,3 (H) N=42, N=60, andN=82. 4;:
=82. 6,: (M) N=60; (@) N=382; (A) N=120. The dotted and (@) N=42, N=60, andN=82. 5,: (A) N=42, andN=60, and
solid lines are the scaling curves for the@nd 6, knots with slope  N=82. 6,: (¥) N=60, N=82, andN=120. 7;: (x) N=60, N

of —0.95. =82, andN=120. The solid line is the scaling curve with slope of
—0.95.
Re| 0%

R~ RF(H) @) againstD collapse into one line and thus confirm the predic-
tion. We therefore believe that the simulations are self-

Equation(7) can be expressed in terms pfor v~0.6, consistent and a scaling law with insight into physics is wor-
thy of further pursuit. A possible explanation is that the
Rj~N117p =059 ~095 (8)  knotted chain in this study is in an intermediate regime be-

tween a free chain and a completely stretched chain. The
Note that this scaling relation is quite different from the one-power law is still followed in this regime, arising from the
dimensional chain argument for the linear chain, which givessompetition between the external, geometrical constraint and
Rj~ND~?3 R; of a knotted chain has a stronger depen-the internal topological effect inherent in the knot.
dence orD than that of a linear chain. This fact implies that We have also recorded the lateral spread of the chain
the loops within a knot being forbidden to cross one anothe(Rge,p> for different chain lengths and types of knot. The
enhances the excluded interactions between the knottegriation of |r(R§em> with In(D/2) is plotted in Fig. 5. A
chain and the wall. To further verify the relation, we havefairly good linear relation betwee(er,erp) andD? is shown
plotted R /N*" againstD/2 on a log-log plot. As one can ang therefordR?., ) scales a®? for D<Re, as expected.
see from Fig. 3, data for knots &nd 6, with different chain  The deviation from the linear relation for large valuesibf
lengths collapse into two separate lines. This result showggicates that foD = 2R a transition takes place. The char-

H i 1.17 i H .. . . . .
that the scaling relatiof~N™""is also valid. The differ- acteristic volume associated with a confined chain can be
ence between these two data sets comes from the topologicaiimated as/~ R2 R;. Consequently, one hag¢~ D43
perp™| - '

gffec_:ts of the two different 'gypes of knot. Finally, as depicteldfOr a linear chain. For a knotted chain, howevgr-D2~ ™

in Fig. 4, we have taken into account the effects of chain_ 105 e 1o the looped structure, the volume of the con-
lengths(N) and knot complexityp) onR; and all the data for  ineq knot increases with increasiry less evidently than
different knots with different collapse crumple together. They o+ of 4 linear chain.

best-fitted line for these data has a slope approximately equal
to —0.93. Again, the results verify the validity of E(B).

Note thatR) is proportional taN“ wherea~1.17. We are
aware of the fact that for a linear chain »(~0.6) for D We have studied the static properties of a polymer knot
>R and becomes 1 @3<Rg. On the basis of this conclu- initially confined in a tube and allowed to equilibrate within
sion, one would intuitively anticipate that it is impossible for the tube. In this work we are also interested in the nonequi-
the exponentr to be greater than 1. In this study, howewer, librium relaxation behavior, after the constraint is removed.
is found to be greater than 1 for a knotted chain. As de-Recall that the confinement energy of a linear chain confined
scribed in the previous section, the exponanis first ob-  in a tube, according to de Gennjdd], can be expressed as
tained from the simulation results f&?; and D combined
with the well-known dependence & on N [18,20. Then, = :T(b(&) 9)
with the chain length altered directly, the data Rf/N“ conf™— D/

B. Dynamic properties
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| =0 t=1 =2 t=3 =4

FIG. 6. Snapshots of the configurations of a single knotted chain
(4,,N=60) during the relaxation process. Initially, the chain is
In(D/2) extended due to the confinement in a tub®#&=2.0. The tube is
removed at=0. Snapshots betwe¢mndt+ 1 contain 4x 10° MC
steps. The bead diameter has been decreased for the purpose of

“06 0.8 10 1.2 14 1.6 18

FIG. 5. The variation of the lateral spreadﬁﬁerQ of knots as a
function of InD/2) for various knots. @) 3,;, N=60; (®) 4,,

clarity.
N=60; (A) 5,, N=60; (¥) 6,, N=60; (d) 5,, N=82; (O) Y
6., N=82; (Aup) 7., N=82. The solid line is the scaling curve JR
with slope of 2. fv:6771“a 7) N, (12)

In the strong confinement limih <R (i.e.,Re/D—x), the  \yherey is the viscosity. Assuming that the relaxation time is
energy has a linear relation witK, FconfElT(RF/D)X”N- dominated by a single time scatg, the time dependence of
Consequentlyx=1/v and F¢on=TN(a/D)™". The forego- R)(t) can be written a&(t)=R(0)F(t/) for some func-
ing equation can be rearranged 10 giV&conr  tion F. The work dissipated is then given by
=T(R|/Rg)*~"), where Rj=Na(a/D)"*~*. For a poly-

mer knot confined within a tube, howev&; is not propor- Ro

tional toN in the limit of Re>D. Ry is proportional toN*+’ W, = fo f,dR. (12)
instead. It is reasonable to speculate that the confinement

energy in the present case does not have a linear relatigfquating Eqs(10) and (12), 7| can be estimated by

with N. In light of the blob theory, the polymer knot can be

assumed to break up into an ideal string of noninteracting

blobs, each with sizd. This scenario is valid when the 7|
resulting knot extension exceeds the Flory radigsbut is

not yet comparable to the fully extended length under exterpe have used the relation

nal confinement. The blob size is related to the effective

stretching force and temperature Ba= kg T/, Wherekg Re|\™
is the Boltzmann factor. Thusfe= (ke T/Rg)(R)/Re) ™ Ro=RF(3) ;
and the confinement energy of the knot is equivalent to the

elastic work done by the effective stretching force. The workwhere m=0.95 andRg~aN’p~#*5 In good solventsy

can then be estimated as ~0.6, one obtains the relaxation time from Ef3),

T||~N2'2p_0'52DO'05. (15)

a
_ “?NRgzmﬂ)/ngm—l)/m_ (13)

(14)

R )(l+m)/m

Ro 0
Wel—JO fefden”kBT(R—F , (10

When the tube is removed &t 0, the knotted chain starts
to relax toward Flory coil conformation. Figure 6 depicts the
relaxation process. One unit of time containg 40° MC
whereRy,=R(t=0). steps. It was found that the relaxation mechanisms are some-

We attempt to analyze such a relaxation phenomenon by what different from those associated with a linear chain. Ow-
similar method to that adopted in R¢1.2]. We assume that ing to the excluded volume interactions between the chain
the confinement energy is dissipated by the viscous dampinigeads and the wall, a linear chain confined in a tube becomes
force after the constraint imposed upon the chain is relievedextended. When the constraint is removed, the large-scale
In our Monte Carlo simulation, there is no hydrodynamicrelaxation proceeds primarily through the end beads of the
interaction, and therefore the Rouse model is expected to bghain. For knotted chains, due to the looped structure, there
correct. By using Stokes law, the viscous damping force caare no free end beads and the relaxation can start only with
be obtained as small-scale internal relaxation by each bead on the chain.
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_ . ) FIG. 9. Monte Carlo data for the relaxation tingie units of
FIG. 7. R|‘(t){R“(O) for 5, andN=60 at different diameters of MCS/monomer 7-”/p’°'52 vs D/2 for various knots aN=60: (M)
the tube ( In units Of MCS D/2: 23, 25, 27, 30, 33, and 35 31’ (O) 41, (A) 51, (v) 61, (*) 71 -I—he SO“d “ne I’epl’esents the

from bottom to top. scaling relation with a slope of 0.05.

The conformations of the knotted chains can be probed by the z direction fluctuategas can be seen in Fig. 6 as well
looking at snapshots of the relaxation process as shown ifowever, the average over many relaxation processes results
Fig. 6. Initially, the knot is in its extended state. As the con-j, 5 smoothly decaying curve. Those curves in Fig. 7 show
straint is removed, the knot starts to recoil. Because of théne evolution of the ensemble-averaged relaxation processes.
looped structure of a knotted chain, the relaxatioRj(t) is  |n general, these curves are noisier than those for a linear

less evident than that of a linear chdii2]. At t=4 (i.e.,  chain. Thus, more realizations of the relaxation process are
after 1.6<10° steps, the knot approaches its natural stateneeded in this study.
fairly closely.

o dthe ch 0 . . The relaxation timer| is extracted from the data of
We have monitored the changesR(t) as a function of R (1)/R (0) by assuming that it decays exponentially to
t, after the constraint is removed, through dynamic Monteﬁu—“ﬁR 0 —tlr [ ot

) . . : . ase "7l. Figure 8 shows the variation af
Carlo simulations. Figure 7 displays the variation of 1(=)/Ry(0) 9 I

) .~ with D/2 for 3; with N=42, 60, and 80. In accord with Eq.
Ry(t)/Ry(0) versust for 5, andN=60 at different tube di- (15 it is not surprising that the relaxation time is a fairly

ameters. Note that, in fact, the radius of gyration of the chaifyesk function of the tube diameter. The lines plotted in

5

a—A—A & A—x
10° L
o & [ ] 1
® hd ) hd = ~
= o~
- Z\\ ,_.__.’—.——.&—.4——;.
e . °
——._'—.——I—.———'
105 2
2 3 4 12 3 2
D/2 D/2

FIG. 8. Monte Carlo data for the relaxation tinfi@ units of FIG. 10. Monte Carlo data for the relaxation tiri@ units of
MCS/monomer 7 vs D/2 for 3, knot at various chain lengthsil) MCS/monomey T”/NZ'Z vs D/2 for 3; knot at various chain
N=42; (@) N=60; (A) N=82. The solid lines are the scaling lengths: @) N=42; (®) N=60; (A) N=82. The solid line de-
relation with a slope of 0.05. notes the scaling relation with a slope of 0.05.
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Fig. 8 are straight lines with slopes equal to 0.05. The simutapse into a single line with a slope equal to 0.05. The scaling
lation results are quite consistent with our scaling analysistelation TH~N2-2 is therefore verified.
This result indicates that the chain takes about the same time In this paper, the dynamic Monte Carlo method is adopted
to relax for variousD. This consequence is different from to study the relaxation of a knotted chain. In terms of long
what we observed for a linear chain. We speculate that theerm, large-scale properties, it is equivalent to the Rouse
relaxation process of a knot consists of two different time-model, in which the effects of internal friction are negligible
scale regimes. In the early stage, the relaxation is primarily24]. There is another dynamic algorithm that could be used
caused by the rearrangement of the “blobs” formed withinto model a hard-core chain confined to a ti@&,26. The
the knot. At longer times, however, the whole chain underBrownian dynamics algorithm, with random thermal forces
goes relaxation through the movements of each bead. At thigcting on monomers and hydrodynamic interactions ne-
stage, the tension of the chain caused by the constraint of ttidected, should be capable of reproducing the work presented
tube wall is relieved and the topological complexity of the here.
knot p has more profound effects on the relaxation process
than doed. Thus, 7 becomes essentially independentof
According to the scaling analysis, we should obserye
~p~%%2 In Fig. 9, the quantityr;/p~°*?is plotted against This research was supported by National Council of Sci-
D/2 on a log-log plot for different types of knot withl ence of Taiwan under Grant No. NSC 90-2214-E-002-016.
=60. Although the data are quite scattered, they still exhibity.J.S. would like to thank Professor Heng-Kwong Tsao for
a fairly collapsed pattern. Finally, Fig. 10 illustrates the ef-helpful discussions. Computing time provided by the Na-
fect of chain length. The relaxation timg is scaled with  tional Center for High-Performance Computing of Taiwan is
N?2 for 3; andN=42, 60, and 82. Similarly, the data col- gratefully acknowledged.
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